Proof by Contradiction

A proof by contradiction is a proof in which one assumption is made. Then, by using valid arguments, a statement is arrived at which is clearly false, so the original assumption must have been false.

Possible Answers:

Explanation:

To show a proposition is true, assume its opposite is true and then show this leads to a conclusion that is false.
Thus, the original proposition is true because its opposite is false.
[It is assumed that a proposition is either true or false.]

Example:
To prove that $\sqrt{2}$ is irrational (cannot be written as a fraction).
Suppose that $\sqrt{2}=\frac{m}{n}$ for integers m and $n, n \neq 0$, and that the fraction
$\frac{m}{n}$ is such that m and n have a highest common factor of 1 .
We can then show that both m and n must be even. That is, both m and n are divisible by 2 .
But this is false, as m and n have a highest common factor of 1 .
So $\sqrt{2}$ cannot be written as fraction, and the proof is complete.

Geometry : Proof by Contradiction

Triangle ABC has no more than one right angle. Can you complete a proof by contradiction for this statement?

Assume $\angle A$ and $\angle B$ are right angles
We know $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
By substitution $90^{\circ}+90^{\circ}+\angle C=180^{\circ}$

$\therefore \quad \angle \mathrm{C}=0^{\circ}$ which is a contradiction
$\therefore \quad \angle \mathrm{A}$ and $\angle \mathrm{B}$ cannot both be right angles
\Rightarrow A triangle can have at most one right angle

'Tangent' Method

Theorem 20: Each tangent is perpendicular to the radius that goes to the point of contact.
Suppose the point of contact is P and the tangent I is not perpendicular to OP .

- Let the perpendicular to the tangent from the centre O meet it at Q .
- Pick R on $P Q$, on the other side of Q from P, with $|Q R|=|P Q|$ (as below).

Then $\triangle O Q R$ is congruent to $\triangle O Q P$. [SAS]
$\therefore|O R|=|O P|$, so R is a second point where I meets the circle. This contradicts the given fact that I is a tangent.

Thus I must be perpendicular to OP, as required.

