Proof by Contradiction

A proof by contradiction is a proof in which one assumption is made. Then, by using valid arguments, a statement is arrived at which is clearly false, so the original assumption must have been false.

Possible Answers:

Explanation:

To show a proposition is true, assume its opposite is true and then show this leads to a conclusion that is false.

Thus, the original proposition is true because its opposite is false.

[It is assumed that a proposition is either true or false.]

Example:

To prove that $\sqrt{2}$ is irrational (cannot be written as a fraction).

Suppose that $\sqrt{2} = \frac{m}{n}$ for integers *m* and *n*, $n \neq 0$, and that the fraction

 $\frac{m}{n}$ is such that m and n have a highest common factor of 1.

We can then show that both m and n must be even. That is, both m and n are divisible by 2.

But this is false, as m and n have a highest common factor of 1.

So $\sqrt{2}$ cannot be written as fraction, and the proof is complete.

Geometry : Proof by Contradiction

Triangle ABC has no more than one right angle. Can you complete a proof by contradiction for this statement?

Assume $\angle A$ and $\angle B$ are right angles We know $\angle A + \angle B + \angle C = 180^{\circ}$ By substitution $90^{\circ} + 90^{\circ} + \angle C = 180^{\circ}$

- \therefore $\angle C = 0^0$ which is a contradiction
- \therefore $\angle A$ and $\angle B$ cannot both be right angles
- \Rightarrow A triangle can have at most one right angle

'Tangent' Method

Theorem 20: Each tangent is perpendicular to the radius that goes to the point of contact.

Suppose the point of contact is P and the tangent I is not perpendicular to OP.

- Let the perpendicular to the tangent from the centre O meet it at Q.
- Pick R on P Q, on the other side of Q from P, with |QR| = |P Q| (as below).

Then $\triangle OQR$ is congruent to $\triangle OQP$. [SAS]

 \therefore |OR| = |OP|, so R is a second point where I meets the circle. This contradicts the given fact that I is a tangent.

Thus I must be perpendicular to OP, as required.