Algebra 3

Inequalities

- Solve linear and quadratic inequalities
- Solve rational and modulus inequalities
- Graph a solution set on a number line
- Solve abstract inequalities

Some Rules

1. Multiplying or dividing an inequality by a negative number reverses the in the direction of the inequality symbol
2. $x \in N$ or $x \in Z$ use dots when writing on a number line $x \in R$ use a heavy line when plotting on a number line

Linear Inequalities

Eg 1
Find the solution set of

$$
11-3 x \geq 2
$$

and graph on a number line $x \in N$.

Eg 2
i. Find the solution set A of $2 x+7 \leq 11, x \in R$
ii. Find the solution set B of $4-2 x<10, x \in R$
iii. Find $A \cap B$ and graph on a number line

Rational Equalities

- Just multiply both sides of the equation by the square of the denominator

Eg. 1
Solve the inequality

$$
\frac{3 x+1}{x-1} \geq 2
$$

Modulus Inequalities

- Remember that the modulus of a number is the positive value of that number

$$
\begin{gathered}
|x| \leq a \text { then }-a \leq x \leq a \\
|x| \geq a, \text { then } x \leq-a \text { or } x \geq a
\end{gathered}
$$

Eg. 1
Solve the following inequality

$$
|5-2 x| \leq 3
$$

Eg. 2
Solve the following inequality

$$
|4 x+7| \geq 1
$$

Abstract Inequalities

1. Write down the inequality to be proved
2. Using reversible steps for inequalities make a true algebraic inequality
3. If the above is true then the inequality must be true

Remember

$$
(\text { real number })^{2} \geq 0, \text { and }-(\text { real number })^{2} \leq 0
$$

Eg. 1

Prove that the following is true

$$
a^{2}+4 b^{2} \geq 4 a b
$$

Eg. 2
Prove the following

$$
\frac{a}{b^{2}}+\frac{b}{a^{2}} \geq \frac{1}{a}+\frac{1}{b}
$$

Eg. 3
Prove the following has real roots

$$
x^{2}-4 p x-x+2 p=0
$$

Indices

- To know and apply rules of indices
- Solve problems involving indices

Basic Indices

The first rule: $\quad a^{n} \times a^{m}=a^{m+n}$
The second rule: $\left(a^{n}\right)^{m}=a^{m n}$
The third rule: $\quad a^{m} \div a^{n}=a^{m-n}$
The fourth rule: $\quad a^{0}=1$
The fifth rule:

$$
a^{-1}=\frac{1}{a} \quad a^{-m}=\frac{1}{a^{m}}
$$

The sixth rule:
$a^{k}=\sqrt{ } a \quad a^{\frac{1}{m}}=\sqrt[V]{ } a$
$a^{\frac{n}{n}}=\left(a^{\frac{1}{m}}\right)^{n}=(\sqrt[m]{a})^{n}$

Eg. 1
Solve the following
$125^{\frac{2}{3}}$

Exponential Equations

1. Rewrite given equation to the same power
2. Bring everything to the same base
3. Equate the powers to be equal, solve for x

Eg. 1

Solve for x in the following

$$
27^{4+3 x}=243^{1+2 x}
$$

Eg. 2
Solve for x ;

$$
2^{x^{2}}=8^{2 x+9}
$$

Eg. 3
Solve for x and y in the following

$$
\begin{aligned}
& 2^{x}=8^{y+1} \\
& 3^{x-9}=9^{y}
\end{aligned}
$$

Solving by Substitution

Eg. 1
Solve the equation

$$
2^{2 x+1}-5\left(2^{x}\right)+2=0
$$

Eg. 2
Solve the equation

$$
3^{x+2}-82+3^{2-x}=0
$$

Logarithms

- To know and apply the rules of logs
- Solve problems involving logs

General Rule of Logs

$$
a=b^{c} \equiv \log _{b} a=c
$$

Eg. 1
Evaluate the following
$\log _{7} 343$

Eg. 2
Evaluate the following

$$
\log _{27} \frac{1}{3}
$$

Natural Logs

$$
\log _{b}(x \cdot y)=\log _{b}(x)+\log _{b}(y)
$$

$\log _{b}(x / y)=\log _{b}(x)-\log _{b}(y)$
$\log _{b}\left(x^{y}\right)=y \cdot \log _{b}(x)$
$\log _{b}(c)=1 / \log _{c}(b)$
$\log _{b}(1)=0$
$\log _{b}(x)=\log _{c}(x) / \log _{c}(b) \quad \log _{b}(b)=1$

Log Equations

1. Equate to a single log on both sides, equate LHS=RHS

Or
2. Get a single log and change to index form

NOTE: Ensure all logs are to the same base

Eg. 1
Solve

$$
\log _{2}(x+6)-\log _{2}(x+2)=1
$$

Eg. 2

$$
\log _{e}(x+1)+\log _{e}(x-1)=\log _{e} 3
$$

Eg. 3

$$
\log _{2} x-\log _{2}(x-1)=4 \log _{4} 2
$$

